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Abstract

Purpose – To determine the axial evolution of the hydrodynamic and the thermal fields for mixed
convection in inclined tubes and to investigate the presence of flow reversal.

Design/methodology/approach – The elliptical, coupled, steady state, three-dimensional
governing partial differential equations for heated ascending laminar mixed convection in an
inclined isothermal tube were solved numerically using a finite volume staggered grid approach.

Findings – The axial evolution of the velocity profiles and fluid temperatures show that upstream
diffusion has an important effect near the inlet of the heating region. As a result, both the wall
shear stress and the Nusselt number are affected upstream of the heating zone. Flow reversal occurs
of GF $ 9 £ 105. The shape and size of the region with negative velocities depends strongly on the
value of the Grashof number. The effect of the Grashof number on the axial evolution of the wall
shear stress and the Nusselt number is shown to be very important in the region of developing
flow.

Research limitations/implications – The results have been calculated for one Reynolds number
(Re ¼ 100), a single fluid (air) and one tube inclination (458).

Practical implications – Further results of this type can be mapped and would be useful for heat
exchanger design.

Originality/value – This is the first time that flow reversal has been calculated numerically for
inclined tubes. Most previous studies concern horizontal or vertical tubes and use axially parabolic
equations which are easier to solve but can not calculate the flow field in the region with backflow.
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Nomenclature
a ¼ thermal diffusivity (m2 s21)
D ¼ tube diameter (m)
g ¼ acceleration of gravity (m s22)
Gr ¼ Grashof number
L ¼ length of isothermal region (m)

P ¼ pressure (Pa)
Pr ¼ Prandtl number
R ¼ non-dimensional radial coordinate
Re ¼ Reynolds number
T ¼ temperature (K)
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V ¼ velocity (m s21)
x, y ¼ cartesian coordinates (m)
Z ¼ axial coordinate (m)
Greek letters
a ¼ tube inclination
b ¼ thermal expansion coefficient (K21)
m ¼ viscosity (N s m22)
r ¼ density (kg m23)

t ¼ non-dimensional shear stress

f ¼ circumferential coordinate

Indices
o ¼ inlet conditions

R, Z ¼ radial, axial component

w ¼ wall value

f ¼ circumferential component

1. Introduction
Combined forced and free convection in the entrance region of tubes occurs in many
engineering installations such as heat exchangers, nuclear reactors, solar collectors, etc.
The secondary flow induced by the buoyancy force and its effects on the hydrodynamic
and thermal fields have therefore been investigated both experimentally and
numerically. Piva et al. (2000) have recently compiled an extensive list of articles
dealing with this problem. Most such studies deal with flow in horizontal or vertical
tubes even though inclined tubes are often used in practice. The few numerical studies
which have considered mixed convection in inclined tubes (Choudhury and Patankar,
1988; Orfi et al., 1998; Ouzzane and Galanis, 1999) have used the three-dimensional
axially parabolic formulation proposed by Patankar and Spalding (1972). By neglecting
the axial diffusion of heat and momentum, this approach permits a marching integration
calculation procedure. It thus reduces the computer memory needed to solve the partial
differential equations modelling the flow field but cannot predict either the effects of
upstream diffusion of momentum and heat or those of flow reversal.

During the last three decades, some attention has been paid to the effects of axial
diffusion of momentum and heat, mostly for pure forced convection. Thus, the distinct
analyses of hydrodynamic and thermal laminar entrance problems (Shah and London,
1978) provide the limits beyond which axial diffusive transport can be neglected:
momentum axial diffusion can be neglected far from the immediate entrance provided
Re . 400 while axial diffusion of heat can be neglected for Pe . 10 when the wall heat
flux is uniform, and for Pe . 50 when the wall temperature is uniform. Pagliarini
(1989) investigated these effects for simultaneously developing forced convection and
concluded that the criterion for the inclusion of the axial diffusion terms should be
based on both the Reynolds and Péclet (or Prandtl) numbers. Nesreddine et al. (1998)
in their numerical study of laminar mixed convection of air, with aiding or
opposing buoyancy, mapped the conditions that give rise to significant preheating and
flow reversal on a Grashof-Reynolds plane. They thus established criteria that
determine

(1) when the inlet boundary conditions can be applied at the beginning of the
heated section of the tube, and

(2) when the elliptical formulation is necessary to describe the flow field accurately.

Flow reversal in vertical tubes has been observed experimentally (Bernier and Baliga,
1992) and predicted numerically (Nesreddine et al., 1995; Zghal et al., 2001). The study
by Zghal et al. (2001), who used a 2D elliptical formulation to model the developing
laminar flow field for ascending air flow in a uniformly-heated vertical tube, presents
an interesting chart, which defines the critical combinations of Re, Gr and heating
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length leading to flow reversal. Wang et al. (1994) have analysed mixed convection
with flow reversal in both vertical and horizontal tubes using a 3D elliptical model for
the laminar flow field. All of these studies show that flow reversal has important
effects on the Nusselt number and on the friction factor.

In view of the demonstrated important effects of axial diffusion and flow reversal on
mixed convection, and the lack of relevant information for such conditions in inclined
tubes, the present research program has been undertaken. It includes the numerical
prediction and the experimental visualisation of such flow fields. In this paper we
present the numerically predicted effect of the Grashof number on the axial velocity
distribution for ascending heated air flow in an inclined isothermal tube. Particular
emphasis is placed on the shape and size of the region with negative axial velocities (i.e.
velocities opposite to the direction of the mass flow) and on the effect of these negative
velocities on the friction coefficient and on the Nusselt number. The sofware used in
this study can eventually be adapted for the design of heat exchangers and the
prdiction of their off-design performance.

2. Mathematical formulation and numerical scheme
The problem under consideration and the coordinate system are shown in Figure 1.
A Newtonian fluid enters the inclined tube at Z ¼ 210D with uniform temperature To

and velocity Vo. The solid-fluid interface is adiabatic between Z ¼ 210D and Z ¼ 0
while the rest of the interface from Z ¼ 0 to Z ¼ L is isothermal (Tw . To).
The following assumptions are introduced:

. The fluid properties are constant except for the density whose variation is
considered only in the buoyancy terms and modelled using the Boussinesq
approximation:

r ¼ ro½1 2 bðT 2 ToÞ� ð1Þ

. The flow is laminar, steady and three-dimensional.

. Viscous dissipation is neglected as in all the numerical studies cited in the
introduction.

Figure 1.
Schematic representation
of system under study
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With these assumptions, the governing equations in cylindrical coordinates are as
follows:
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This system of coupled, non-linear partial differential equations is subject to the inlet
(at Z ¼ 210D) and interface (at R ¼ 0:5) conditions described above. Since the
formulation is elliptical, boundary conditions must also be specified at the tube outlet
(Z ¼ L). At that position, outflow conditions (Fluent 6.1 User’s Guid, n.d.) are specified.

The system of PDEs is discretized with the control volume technique. A first order
upwind method is used to interpolate the variables while the PISO algorithm is
introduced for the velocity-pressure coupling. The pressure is calculated with a
body-force weighed scheme and a segregated solution method is used to solve the
discrete equations sequentially (Fluent 6.1 User’s Guid, n.d.). The discretisation grid is
uniform in the circumferential direction and non-uniform in the other two directions. It
is finer near the heated tube inlet (Z ¼ 0) and near the wall (R ¼ 0:5) where the velocity
and temperature gradients are large. Three different grid distributions (250 £ 36 £ 31;
200 £ 40 £ 31 and 300 £ 40 £ 31 in the axial, circumferential and radial directions
respectively) have been tested in the heating region (0 # Z # L). Comparisons of
velocity and temperature profiles at different axial positions have shown that the
results predicted by the two grids with the higher number of axial grids are essentially
identical (Voicu, 2002). In view of these results the adopted grid has 312480 nodes
(250 £ 36 £ 31 in the heating region plus 30 £ 36 £ 31 in the adiabatic entry zone).
Figure 2 shows a comparison of velocity and temperature profiles calculated with the
selected grid and corresponding experimental results by Zeldin and Schmidt (1972).
The agreement is very good except for the temperature very close to the tube inlet
where, according to the authors of the experimental study, axial conduction in the tube
walls distorts the measured temperature profiles. The numerical results obtained in the
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present study are very close to those calculated by Zeldin and Schmidt (1972) as well as
Collins (1980) who pointed out the importance of using an elliptical formulation such as
the one used here. In view of these results we consider that the model, the numerical
code and the selected grid are valid and can be used for the purposes of the present
study.

3. Results and discussion
The results are presented in non-dimensional form. Reference quantities are the tube
diameter D, the mean axial velocity Vo and the temperature difference (Tw 2 To). With
this formulation, the solution depends on the values of four parameters: the tube

Figure 2.
Comparison of numerical
results with
measurements by Zeldin
and Schmidt (1972) in (a)
non-dimensional axial
velocity, (b)
non-dimensional
temperature
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inclination as well as the Prandtl, Reynolds and Grashof numbers (or, equivalently, the
Prandtl, Péclet and Richardson numbers). All the results presented here were
calculated with a ¼ 458, Pr ¼ 0:7, Re ¼ 100 and L=D ¼ 106:7 for different Grashof
numbers (i.e. different wall temperatures and a constant To ¼ 295:75 K) up to
Gr ¼ 1:5 £ 106.

Figures 3a-d show the axial evolution of the non-dimensional fluid temperature
near the wall (R ¼ 0:45) at three different circumferential positions (f ¼ p=2 and
f ¼ 2p=2 correspond respectively to the top and bottom of the tube) for four different
increasing values of the Grashof number. They also show the corresponding evolution
of the non-dimensional average fluid temperature. It is noted that the latter, which is
equal to zero in the adiabatic entry region, starts changing very soon after the
beginning of the heated region. This distance which is approximately equal to D for
Gr ¼ 1:5 £ 105 decreases as the Grashof number (or, equivalently, the wall
temperature) increases. Furthermore, the average fluid temperature approaches the
wall temperature (the corresponding non-dimensional value tends to 1) at a distance
from the beginning of the heated region which also decreases as Gr increases. These
results indicate that the thermal development length decreases as Gr increases and is,
for the conditions studied here, quite short: it varies from approximately 15 diameters
for Gr ¼ 1:5 £ 105 to 5 diameters for Gr ¼ 1:5 £ 106. The order of magnitude of this
length is qualitatively consistent with the corresponding result for forced convection
(Shah and London, 1978) which indicates that the thermal development length is quite
short for low Reynolds numbers.

The results of Figures 3a-d also show that, at any given axial position, the fluid
temperature near the wall increases monotonically between the bottom (f ¼ 2p=2)
and top (f ¼ p=2) of the tube. This result is due to the y-component of the buoyancy
force which creates a secondary flow in the xOy plane described in several earlier
studies (Choudhury and Patankar, 1988; Orfi et al., 1998; Ouzzane and Galanis, 1999).
However, these studies, which use an axially parabolic formulation, cannot predict the
preheating of the fluid in the adiabatic zone (Z , 0) which is clearly illustrated in
Figures 3a-d. This effect has also been noted by Nesreddine et al. (1998) in a study of
mixed convection in a vertical tube.

Figures 4-7 show the axial velocity profiles at four different cross-sections in the
heating region (Z=D ¼ 0, 0.45, 1.7, 2.95) for four different Grashof numbers. Parts a and
b of each figure present the velocity profile in the y0z and xOz planes respectively. It
should first be noted that the velocity profiles in the xOz plane are always symmetrical
with respect to the tube axis. This observation is consistent with the overall symmetry
of the problem with respect to the vertical plane which includes the tube axis. Secondly,
it has been observed that both upstream (Z=D ¼ 26) and far downstream (Z=D . 50)
the velocity profiles in both planes under consideration are independent of the Grashof
number and essentially identical to the Poiseuille parabolic distribution (these results
are not presented here for lack of space). This is due to the fact that, at these axial
positions, the fluid temperature is essentially uniform (see Figure 3) and the
hydrodynamic field is developed.

On the other hand, the axial velocity profiles at the entry of the heating region
(Z=D ¼ 0) are not parabolic and are strongly influenced by the value of the Grashof
number. This is particularly evident in part a of the figures. Thus for Gr ¼ 1:5 £ 105

(Figure 4a) the velocity profile at Z=D ¼ 0 has a maximum value of approximately
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Figure 3.
Axial evolution of the
non-dimensional fluid
temperature
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1.8 at y=D < 0:05 and decreases monotonically as y=D !^0:5. This is due to the fact
that in this case the temperature difference Tw 2 To is quite small. Therefore the
corresponding natural convection effects are negligible and the velocity profile
evolution between Z=D ¼ 210 and Z=D ¼ 0 is controlled by boundary layer growth.
This explanation is reinforced by the observation that for this Grashof number the
velocity profiles in Figures 4a-b are almost identical, suggesting that for these
conditions (Gr ¼ 1:5 £ 105, Z=D ¼ 0) the velocity field is essentially axisymmetric.
The situation at Z=D ¼ 0 is completely different for the three other Grashof numbers.

Figure 4.
Non-dimensional

axial velocity profiles for
Gr ¼ 1:5 £ 105 in (a) yOz

plane, (b) xOz plane
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The velocity profiles in the vertical plane (part a of Figures 5-7) exhibit two local
minima in the upper and lower halves of the tube. The maximum velocity occurs near
the tube axis for Gr ¼ 9 £ 106 (Figure 5a) and near the bottom of the wall for Gr ¼
1:25 £ 106 (Figure 6a) and Gr ¼ 1:5 £ 106 (Figure 7a). These results indicate that, for
those higher temperature differences Tw 2 To, the effects of natural convection created
by the axial component of the buoyancy force play a significant role at the inlet of the
heating region.

The preheating of the fluid in the adiabatic region and the dependence of the
velocity profile at Z ¼ 0 on the Grashof number illustrate the effects of axial diffusion

Figure 5.
Non-dimensional axial
velocity profiles for
Gr ¼ 9 £ 105 in (a)
yOz plane, (b) xOz plane
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of heat and momentum. They clearly demonstrate the fact that, in situations such as
those under consideration here, application of the inlet-boundary conditions at the
beginning of the heated region (Z ¼ 0) would mask some important phenomena as
noted previously by Shah and London (1978).

Figures 5-7 corresponding to the three higher Grashof numbers under consideration
also show that the axial velocity can be negative in some regions of the tube. For the

Figure 6.
Non-dimensional axial

velocity profiles for
Gr ¼ 1:25 £ 106 in (a)

yOz plane, (b) xOz plane
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lowest Grashof number, Gr ¼ 1:5 £ 105, negative velocities have not been observed.
This manifestation of flow reversal occurs along the x axis at Z=D ¼ 1:7 for
Gr ¼ 9 £ 105, and at Z=D ¼ 2:95 for Gr ¼ 1:25 £ 106. For Gr ¼ 1:5 £ 106 it occurs
along the y axis at Z=D ¼ 0:45 as well as along the x axis at Z=D ¼ 0:45 and
Z=D ¼ 1:7. Therefore the extent and shape of the region with negative velocities is
considerably influenced by the value of the Grashof number. Figures 8-10 show side

Figure 7.
Non-dimensional axial
velocity profiles for
Gr ¼ 1:5 £ 106 in (a)
yOz plane, (b) xOz plane
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and top views of this region as well as its cross-sections at selected axial positions for
three different Grashof numbers. The secondary flow generated by the y-component of
the buoyancy force is also illustrated in these cross-sections. In all three cases this
secondary flow consists of two symmetrical vortices. Hot fluid rises near the wall and
descends near the vertical diameter. For Gr ¼ 9 £ 105 (Figure 8) the region of negative
axial velocities consists of two distinct, symmetrical, elongated ovoids with a
kidney-shaped cross-section. For Gr ¼ 1:25 £ 106 (Figure 9) the two ovoids are larger
and join across the vertical plane of symmetry at half-length approximately. Finally,
for Gr ¼ 1:5 £ 106 (Figure 10) the two ovoids coalesce over the first half of their
streamwise length. In all three cases, the upstream tip of the region with negative
velocities is closer to the top of the tube than its downstream tip.

Figure 8.
Region of negative axial

velocity for Gr ¼ 9 £ 105
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The hydrodynamic characteristics illustrated in Figures 4-10 influence the wall shear
stress. Figure 11 shows the axial evolution of the circumferentially-averaged value of
this parameter calculated from the expression:

t ¼
1

2p

Z2p
0

›VZ

›R
du ð7Þ

Far upstream from the heated zone this parameter is independent of the Grashof
number indicating that upstream diffusion does not have any influence for Z=D , 21.
The numerically calculated value of t in this upstream region is 8.02 which is very

Figure 9.
Region of negative
axial velocity for
Gr ¼ 1:25 £ 106
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close to the corresponding value for fully developed forced convection (t ¼ 8)
confirming the earlier assertion that in this region the flow is isothermal and
hydrodynamically developed. Just before the beginning of the heated region
(21 , Z=D , 0) however, the value of t decreases slightly as a result of the
upstream diffusion of heat and momentum described earlier. The minimum value in
this region decreases as the Grashof number increases. Immediately after the
beginning of the heated region (Z=D . 0) t increases rapidly due to the accelerating
effect of the axial component of the buoyancy force which generates high axial
velocities in the vicinity of the solid-fluid interface (cf Figures 4-7). The shear stress
reaches a maximum value which increases with the Grashof number. It then starts

Figure 10.
Region of negative axial

velocity for Gr ¼ 1:5 £ 106

Mixed
convection with

flow reversal

753



decreasing as the temperature of the fluid tends towards a uniform value equal to the
wall temperature and the velocity profile gradually approaches the fully-developed
parabolic profile for isothermal flow. This tendency is substantiated by the fact that for
Z=D . 50 the value of t is independent of Gr and equal to 8.1, i.e. essentially equal to
that for fully-developed forced convection. It should be noted, that for fully developed
mixed convection in a uniformly heated tube the value of t is higher and depends on
the Grashof number (Ouzzane and Galanis, 1999)

Finally, Figure 12 presents the axial evolution of the circumferentially averaged
Nusselt number calculated from the expression

Nu ¼
1

2p

R 2p
0

›T
›Z du

TB 2 TW

ð8Þ

Far upstream from the heating region its value is zero as expected. However, due to the
afore-mentioned upstream diffusion, it becomes positive shortly before the beginning of
the heating region. In the heating region it increases very rapidly and reaches a
maximum value which increases as Gr increases. Beyond this point, the value of Nu
decreases as the fluid temperature approaches the wall temperature and tends towards a
value of 3.634 which is independent of Gr and very close to the corresponding value for
forced convection. Throughout the developing region the value of Nu, at any given axial
position, increases with Gr. It should be noted that the Nusselt number experiences a
small sudden increase at the position where flow reversal occurs. This is attributed to an
increase of bulk temperature caused by the upstream movement of warm fluid.

4. Conclusion
The numerical solution of the elliptical partial differential equations modelling
upwards laminar mixed convection of air, heated in an inclined isothermal tube,

Figure 11.
Axial evolution of
non-dimensional wall
shear stress
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has shown that for the conditions of this study (Pr ¼ 0:7, Re ¼ 100,
1:5 £ 105 # Gr # 1:5 £ 106) axial diffusion plays an important role near the inlet of
the heating region: namely, both the wall shear stress and the Nusselt number are
affected upstream of the heating region. Furthermore, flow reversal has been observed
for Gr $ 9 £ 105. Neither of these effects had previously been reported for mixed
convection in inclined tubes. The effect of the Grashof number on the wall shear stress
and the Nusselt number was shown to be significant in the region of flow development.
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